Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 801 - 825 of 956 results
801.

Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG.

blue miniSOG C. elegans in vivo Cell death Developmental processes
Sci Rep, 10 Feb 2016 DOI: 10.1038/srep21271 Link to full text
Abstract: The genetically encoded photosensitizer miniSOG (mini Singlet Oxygen Generator) can be used to kill cells in C. elegans. miniSOG generates the reactive oxygen species (ROS) singlet oxygen after illumination with blue light. Illumination of neurons expressing miniSOG targeted to the outer mitochondrial membrane (mito-miniSOG) causes neuronal death. To enhance miniSOG's efficiency as an ablation tool in multiple cell types we tested alternative targeting signals. We find that membrane targeted miniSOG allows highly efficient cell killing. When combined with a point mutation that increases miniSOG's ROS generation, membrane targeted miniSOG can ablate neurons in less than one tenth the time of mito-miniSOG. We extend the miniSOG ablation technique to non-neuronal tissues, revealing an essential role for the epidermis in locomotion. These improvements expand the utility and throughput of optogenetic cell ablation in C. elegans.
802.

Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

blue Cryptochromes LOV domains Review
ACS Chem Biol, 9 Feb 2016 DOI: 10.1021/acschembio.5b01019 Link to full text
Abstract: The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.
803.

Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology.

blue red Cryptochromes LOV domains Phytochromes Review
Sci Signal, 9 Feb 2016 DOI: 10.1126/scisignal.aac4779 Link to full text
Abstract: Biological phenomena, such as cellular differentiation and phagocytosis, are fundamental processes that enable cells to fulfill important physiological roles in multicellular organisms. In the field of synthetic biology, the study of these behaviors relies on the use of a broad range of molecular tools that enable the real-time manipulation and measurement of key components in the underlying signaling pathways. This Review will focus on a subset of synthetic biology tools known as bottom-up techniques, which use technologies such as optogenetics and chemically induced dimerization to reconstitute cellular behavior in cells. These techniques have been crucial not only in revealing causal relationships within signaling networks but also in identifying the minimal signaling components that are necessary for a given cellular function. We discuss studies that used these systems in a broad range of cellular and molecular phenomena, including the time-dependent modulation of protein activity in cellular proliferation and differentiation, the reconstitution of phagocytosis, the reconstitution of chemotaxis, and the regulation of actin reorganization. Finally, we discuss the potential contribution of synthetic biology to medicine.
804.

Optogenetic control of nuclear protein export.

blue AsLOV2 HEK293T HeLa Hepa1-6 Endogenous gene expression
Nat Commun, 8 Feb 2016 DOI: 10.1038/ncomms10624 Link to full text
Abstract: Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology.
805.

Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence.

blue LOV domains Background
Elife, 12 Jan 2016 DOI: 10.7554/elife.11860 Link to full text
Abstract: The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics.
806.

Natural Resources for Optogenetic Tools.

blue green red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 2016 DOI: 10.1007/978-1-4939-3512-3_2 Link to full text
Abstract: Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
807.

Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

blue AsLOV2 HeLa Neuro-2a primary mouse cortical neurons Cell differentiation Endogenous gene expression Neuronal activity control
Proc Natl Acad Sci USA, 23 Dec 2015 DOI: 10.1073/pnas.1507355112 Link to full text
Abstract: Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.
808.

Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light.

blue VVD HEK293 HeLa MDA-MB-468 mouse in vivo
Nucleic Acids Res, 15 Dec 2015 DOI: 10.1093/nar/gkv1343 Link to full text
Abstract: Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies.
809.

Micromanagement with light.

blue red LOV domains Phytochromes Review
Nature, 10 Dec 2015 DOI: 10.1038/528291a Link to full text
Abstract: The optogenetics techniques that have long been used in neuroscience are now giving biologists the power to probe cellular structures with unprecedented precision.
810.

Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

blue LOV domains Background
Nat Commun, 9 Dec 2015 DOI: 10.1038/ncomms10079 Link to full text
Abstract: Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.
811.

Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation.

blue AsLOV2 HEK293 HEK293T HeLa mouse in vivo mouse T cells Signaling cascade control Immediate control of second messengers
Elife, 8 Dec 2015 DOI: 10.7554/elife.10024 Link to full text
Abstract: The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca(2+) oscillations and Ca(2+)-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca(2+)-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca(2+)-modulated activities with tailored function.
812.

Optogenetic mutagenesis in Caenorhabditis elegans.

blue miniSOG C. elegans in vivo Developmental processes
Nat Commun, 3 Dec 2015 DOI: 10.1038/ncomms9868 Link to full text
Abstract: Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.
813.

Photocontrolled Exposure of Pro-apoptotic Peptide Sequences in LOV Proteins Modulates Bcl-2 Family Interactions.

blue AsLOV2 in vitro
Chembiochem, 20 Nov 2015 DOI: 10.1002/cbic.201500469 Link to full text
Abstract: LOV domains act as biomolecular sensors for light, oxygen or the environment's redox potential. Conformational changes upon the formation of a covalent cysteinyl flavin adduct are propagated through hydrogen-bonding networks in the core of designed hybrid phototropin LOV2 domains that incorporate the Bcl homology region 3 (BH3) of the key pro-apoptotic protein BH3-interacting-domain death agonist (BID). The resulting change in conformation of a flanking amphiphilic α-helix creates a light-dependent optogenetic tool for the modulation of interactions with the anti-apoptotic B-cell leukaemia-2 (Bcl-2) family member Bcl-xL .
814.

Optical Control of Peroxisomal Trafficking.

blue AsLOV2 Cos-7 HEK293T HeLa S. cerevisiae
ACS Synth Biol, 2 Nov 2015 DOI: 10.1021/acssynbio.5b00144 Link to full text
Abstract: The blue-light-responsive LOV2 domain of Avena sativa phototropin1 (AsLOV2) has been used to regulate activity and binding of diverse protein targets with light. Here, we used AsLOV2 to photocage a peroxisomal targeting sequence, allowing light regulation of peroxisomal protein import. We generated a protein tag, LOV-PTS1, that can be appended to proteins of interest to direct their import to the peroxisome with light. This method provides a means to inducibly trigger peroxisomal protein trafficking in specific cells at user-defined times.
815.

Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.

blue CRY2/CIB1 iLID TULIP in vitro mouse IA32 fibroblasts S. cerevisiae Control of cytoskeleton / cell motility / cell shape Benchmarking
ACS Synth Biol, 30 Oct 2015 DOI: 10.1021/acssynbio.5b00119 Link to full text
Abstract: Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.
816.

Light-assisted small-molecule screening against protein kinases.

blue VfAU1-LOV HEK293 SPC212 Signaling cascade control
Nat Chem Biol, 12 Oct 2015 DOI: 10.1038/nchembio.1933 Link to full text
Abstract: High-throughput live-cell screens are intricate elements of systems biology studies and drug discovery pipelines. Here, we demonstrate an optogenetics-assisted method that avoids the need for chemical activators and reporters, reduces the number of operational steps and increases information content in a cell-based small-molecule screen against human protein kinases, including an orphan receptor tyrosine kinase. This blueprint for all-optical screening can be adapted to many drug targets and cellular processes.
817.

A critical element of the light-induced quaternary structural changes in YtvA-LOV.

blue LOV domains Background
Protein Sci, 10 Oct 2015 DOI: 10.1002/pro.2810 Link to full text
Abstract: YtvA, a photosensory LOV (light-oxygen-voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light-sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA-LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA-LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo-induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA-LOV than the local disruption of Jα helix in the As-LOV domain.
818.

Optogenetic control of endogenous Ca(2+) channels in vivo.

blue AsLOV2 CRY2/CRY2 Cos-7 HEK293 HeLa hESCs HUVEC mouse astrocytes mouse hippocampal slices mouse in vivo NIH/3T3 primary mouse hippocampal neurons zebrafish in vivo Immediate control of second messengers
Nat Biotechnol, 14 Sep 2015 DOI: 10.1038/nbt.3350 Link to full text
Abstract: Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.
819.

Labelling and optical erasure of synaptic memory traces in the motor cortex.

blue AsLOV2 HEK293 mouse in vivo rat cortical neurons rat hippocampal slices Control of cytoskeleton / cell motility / cell shape
Nature, 9 Sep 2015 DOI: 10.1038/nature15257 Link to full text
Abstract: Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.
820.

A photosensitive degron enables acute light-induced protein degradation in the nervous system.

blue AtLOV2 miniSOG C. elegans in vivo Neuronal activity control
Curr Biol, 31 Aug 2015 DOI: 10.1016/j.cub.2015.07.040 Link to full text
Abstract: Acutely inducing degradation enables studying the function of essential proteins. Available techniques target proteins post-translationally, via ubiquitin or by fusing destabilizing domains (degrons), and in some cases degradation is controllable by small molecules. Yet, they are comparably slow, possibly inducing compensatory changes, and do not allow localized protein depletion. The photosensitizer miniature singlet oxygen generator (miniSOG), fused to proteins of interest, provides fast light-induced protein destruction, e.g. affecting neurotransmission within minutes, but the reactive oxygen species (ROS) generated also affect proteins nearby, causing multifaceted phenotypes. A photosensitive degron (psd), recently developed and characterized in yeast, only targets the protein it is fused to, acting quickly as it is ubiquitin-independent, and the B-LID light-inducible degron was similarly shown to affect protein abundance in zebrafish. We implemented the psd in Caenorhabditis elegans and compared it to miniSOG. The psd effectively caused protein degradation within one hour of low intensity blue light (30 μW/mm(2)). Targeting synaptotagmin (SNT-1::tagRFP::psd), required for efficient neurotransmission, reduced locomotion within 15 minutes of illumination and within one hour behavior and miniature postsynaptic currents (mPSCs) were affected almost to the same degree seen in snt-1 mutants. Thus, psd effectively photo-degrades specific proteins, quickly inducing loss-of-function effects without affecting bystander proteins.
821.

An Engineered Split Intein for Photoactivated Protein Trans-Splicing.

blue AsLOV2 E. coli HeLa Control of cytoskeleton / cell motility / cell shape Cell death
PLoS ONE, 28 Aug 2015 DOI: 10.1371/journal.pone.0135965 Link to full text
Abstract: Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
822.

A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.

blue VVD Cos-7 HEK293 mouse in vivo NCI-H1299 U-87 MG Transgene expression
Biochem Biophys Res Commun, 21 Aug 2015 DOI: 10.1016/j.bbrc.2015.08.085 Link to full text
Abstract: Several light-regulated genetic circuits have been applied to spatiotemporally control transgene expression in mammalian cells. However, simultaneous regulation of multiple genes using one genetic device by light has not yet been reported. In this study, we engineered a bidirectional expression module based on LightOn system. Our data showed that both reporter genes could be regulated at defined and quantitative levels. Simultaneous regulation of four genes was further achieved in cultured cells and mice. Additionally, we successfully utilized the bidirectional expression module to monitor the expression of a suicide gene, showing potential for photodynamic gene therapy. Collectively, we provide a robust and useful tool to simultaneously control multiple genes expression by light, which will be widely used in biomedical research and biotechnology.
823.

Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS.

blue AsLOV2 Cos-7 HEK293 HEK293T HIT-T15 primary mouse hippocampal neurons Schneider 2 Immediate control of second messengers
Nat Commun, 18 Aug 2015 DOI: 10.1038/ncomms9021 Link to full text
Abstract: Ca(2+) signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca(2+) channel switch (BACCS), as an optogenetic tool for generating Ca(2+) signals. BACCS opens Ca(2+)-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca(2+) concentration more rapidly, such that Ca(2+) elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca(2+). Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca(2+) signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies.
824.

Investigating neuronal function with optically controllable proteins.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Mol Neurosci, 21 Jul 2015 DOI: 10.3389/fnmol.2015.00037 Link to full text
Abstract: In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain.
825.

Optimizing optogenetic constructs for control over signaling and cell behaviours.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Photochem Photobiol Sci, 2 Jul 2015 DOI: 10.1039/c5pp00171d Link to full text
Abstract: Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
Submit a new publication to our database